About 505,000 results
Open links in new tab
  1. regression - When should I use lasso vs ridge? - Cross Validated

    Ridge regression is useful as a general shrinking of all coefficients together. It is shrinking to reduce the variance and over fitting. It relates to the prior believe that coefficient values shouldn't be too large …

  2. Why are regression problems called "regression" problems?

    I was just wondering why regression problems are called "regression" problems. What is the story behind the name? One definition for regression: "Relapse to a less perfect or developed state."

  3. regression - How to calculate the slope of a line of best fit that ...

    Dec 17, 2024 · This kind of regression seems to be much more difficult. I've read several sources, but the calculus for general quantile regression is going over my head. My question is this: How can I …

  4. How should outliers be dealt with in linear regression analysis ...

    What statistical tests or rules of thumb can be used as a basis for excluding outliers in linear regression analysis? Are there any special considerations for multilinear regression?

  5. regression - Difference between forecast and prediction ... - Cross ...

    I was wondering what difference and relation are between forecast and prediction? Especially in time series and regression? For example, am I correct that: In time series, forecasting seems to mea...

  6. Why do we need multivariate regression (as opposed to a bunch of ...

    I suggest performing your multiple regression on different software packages and see what you get. Another good example here: Note that in this equation, the regression coefficients (or B coefficients) …

  7. regression - Interpreting the residuals vs. fitted values plot for ...

    None of the three plots show correlation (at least not linear correlation, which is the relevant meaning of 'correlation' in the sense in which it is being used in "the residuals and the fitted values are …

  8. regression - Trying to understand the fitted vs residual plot? - Cross ...

    Dec 23, 2016 · A good residual vs fitted plot has three characteristics: The residuals "bounce randomly" around the 0 line. This suggests that the assumption that the relationship is linear is reasonable. The …

  9. Interpretation of R's output for binomial regression

    For a simple logistic regression model like this one, there is only one covariate (Area here) and the intercept (also sometimes called the 'constant'). If you had a multiple logistic regression, there would …

  10. What do the residuals in a logistic regression mean?

    In answering this question John Christie suggested that the fit of logistic regression models should be assessed by evaluating the residuals. I'm familiar with how to interpret residuals in OLS, t...